熱設計の基本

電気製品の開発において、製品を所望の温度内に抑えることは極めて重要なことである。例えば、スマートフォンで動画を見ていたら熱くてやけどした!なんてことがあったら大問題である。そこで、機構設計者は、スマートフォン内の熱源が安全な温度になるように適切な機構を考えるのである。では、具体的にはどうすればよいのであろうか?今日は、それを少しお話ししたいと思う。

そもそも熱って何?

熱が熱が!というが、そもそも熱って何であろうか?

熱は、エネルギーである。温度は、その測定点でのエネルギー量を感覚的に捉えやすい値で示した物である。

エネルギーという概念でくくれば、光、振動、電気と熱は本質的には同じ物である。したがって、新発電方式、振動軽減、騒音対策などのトピックが出てくると、着目している現象に対して一見別の要素が出てくるのは、皆、エネルギー形態で結ばれているからである。

話を元に戻す。熱はエネルギーである。したがって、機構設計者は、作ろうとしている製品の内部に、どれくらいのエネルギーを発生する物が搭載されるのかを把握し、処理する方法を考えなければならないのである。

熱の処理の仕方 (熱の移動形態)

熱を処理するとは、エネルギーを移動させることを意味する。熱としてのエネルギーの移動のさせ方は、下記の三種類のいずれかの方法で行う。

① 熱伝導:熱源に冷たい固体をくっつけて、熱を冷たい方へ直接移動させる。

② 熱伝達:熱源の周囲の流体(空気など)を動かし、熱を流体へ移動させる。

③ 熱放射:熱を電磁波で移動させる。

①は、熱いものに触れると熱い!という現象そのものである。沸騰したヤカンに手が触れると、ヤカンのもつ大量の熱エネルギーが、その接触面からいっきに手に移動しようとするので、熱い!(痛い)と感じる。

②は、出来たてのラーメンの麺をフーフーして冷ましてから食べるという現象である。麺の熱エネルギーを、空気で吹き飛ばして下げているのである。

③は、焚火や暖炉のそばは温かいという現象を表したものである。物体が熱をもつとその熱は物体表面から電磁波によって放射される。

熱の処理の仕方 (理論手法基礎)

熱の移動形態は基本的には三種類しかない。よって、それぞれを数式で扱えれば、あとはその組み合わせで理論的に熱処理を考えることができる。

例えば、作ろうとしている製品の発する熱エネルギー(発熱量)はこのぐらいであり、製品サイズをこのくらいにすれば表面から熱放射でこのくらいの熱を放熱できるから、ファン(=熱源に風を吹き付けたり、空間を換気させる装置)はいらないななどという具合にである。

下記に、まず、三つの伝熱現象に関係する係数を紹介し、次に関係式を示す。

三つの熱移動現象に関係する係数

・熱伝導率α [W・m/m^2・K]

・熱伝達率β[W/m^2・K]

・ステファンボルツマン係数γ:5.67×10^(-8)[W/m^2・K^4
・放射率ε:物体固有の電磁波を出す率。(ex. 皮膚0.9, 樹脂0.6~0.8, 金属0.1)

これらを使って、各熱の移動形態でどのくらいの熱を移動させられるのかを数式で示した物が下記である。

【熱伝導】

【熱伝達】

【熱放射】


これらが基本である。まだまだ知識としては不十分だが、下記のように、熱伝達率を仮置きすれば、ざっくりと設計対象のサイズを見積ることができる。

【例】

・部品から発するエネルギー(発熱量):10W
・部品使用環境:35℃

のとき、部品の表面温度を仕様書に記載のある上限温度85℃にするには、放熱面積Sをどのくらいにすればよいか?

熱伝達の基本式より、

  • P=10W

発熱量Pは、電子部品なら、入出力電力の差が発熱量である。光源部品なら、入力電力から光出力と出力電力を引いたものが発熱量になる。それぞれの部品の仕様書に書いてあるのでしっかり見ていただきたい。

  • ΔT = 85-35 -10 = 40K

通常、使用環境で部品上限温度にならないように5~10℃ほど低めになるように設計する。ここでは、85℃より10℃低い、75℃を目標温度とした。

  • β=5.0W/m^2K

熱伝達率は、風の当て方、層流や乱流、物体の形状でも変わってくるが、ここでは、大体15W/m2Kほどはあるとする。( この辺は、経験による感覚です。 )

すると、S=P/(β・ΔT)より、S=10/(15×40)=0.016m^2=16,000mm^2 の放熱面積が必要だと分かる。

この情報から、機構設計者は、50mm角でフィン長50mm、ピッチが1mm くらいのヒートシンクが必要かな…と考えるのである。

※ 上記のヒートシンクの放熱面積は16,000mm^2 である。

次回は、熱伝達率のもう少し詳しい説明と、他の伝熱現象を組み合わせて現象を予測する方法を述べたいと思う。

Excelによる回帰分析の方法

回帰分析というのをご存知であろうか?これは、二つの量の関係性を分析する手法である。手法としては、今現在、人類が見つけている最も効率的な方法論である。比べる量が三つ以上ある場合は、重回帰分析という。今日は、Excelで簡単に回帰分析する手法を紹介する。身近な現象、実験に使ってみてほしい。

Excelでどうやるのか?

例えば、下記のようなデータがあったとする

これは、某R社のプロジェクターの輝度と販売価格を表にしたものである。データは、価格.com ( 2019/2現在 )のデータを元にした。例えば、あなたが、R社の競合会社の企画者であったとして、「明るさ(輝度)と販売費用の関係」を知るにはどうすればよいだろうか?

こうしたときに、結果の正当性はいったん置いといて、人類の見つけた最善の手法が回帰分析である。

まず、Excelを立ち上げ、上表を打ち込む。そして、表題から表の下端まで、下図のようにマウスでドラッグする。

次に、Excelのリボン(コマンドの上側に出ている部分)において、「挿入」を選ぶ。

この「挿入」の中の中央に、グラフという項目があり、下図の赤丸箇所をクリックする。

すると、下図のようなグラフが出力される。これを散布図という。

この時、横軸が表の左側、縦軸が同右側である。解析の際は、縦軸と横軸を明確にすることは極めて重要なので、記載しておく。やり方は、グラフ上にマウスのカーソルを持っていくと下図のように「十字」「ペン」「ジョウロマーク?」みたいなものが右上に出てくる。その十字(赤丸)をクリックする。

すると、下図のように「グラフ要素」が出てくるので、「軸ラベル」に印を入れる。

すると、下図のようになる。

ラベルのところをマウスでクリックし、要素名を記入する。

ここで、回帰直線を引く。これは、各点からの距離和が最小になるように引かれた直線である。人類が今現在見つけて、定めた、線の引き方である。

やり方は、上図において点のどれかにカーソルを合わせてクリックする。

そして、マウスをその場で右クリックし、「近似曲線の追加」を選択、クリックする。

グラフの点線が、回帰直線である。後は、この直線を表す関数が分かれば、「輝度と価格」の関係が予測できたことになる。やり方が正しいのであって、予測精度などの結果が現実に正しいかどうかは、別の話である。

さて、やり方は、上図の回帰直線を先ほどと同じく、クリックする。出てきた小コマンドの「近似曲線の書式設定」をクリックする。すると、Excelの右側に新たなコマンドが現れる。

そして、右下の赤で囲った箇所「グラフに数式を表示する」にチェックを入れる。そうすると、グラフ上に、数式が表示される。これが、データから回帰分析によって得られた、輝度と価格の関係である。


この後、さらなる分析やディスカッションを経て、この予測が使えそうだと合意ができたら、Excelで下図のようなフォーマットを作っておくと、何かと便利である。

入力の空欄(=セルI20)は、今後、好きな輝度を数値で入力する箇所である。

出力の空欄(=セルI21)には、先ほど求めた回帰直線の数式を記入する。

先ほどのグラフ上の数式におけるXは、最大輝度の入力値である。上図の場合、最大輝度を入力する箇所はセルI20なので、Xの箇所にI20と記述する。

例えば、最大輝度7,000lmのプロジェクターを企画することになったとき、販売価格はどのくらいを想定すればよいか?と思ったとき、上のフォーマットに7,000と入力すると、

という具合になる。

この結果が、予測結果として十分かどうかは、別途議論が必要である。

例えば、この予測では、2,000lmなどは価格がマイナスに出てしまう。この場合は、データ収集箇所を変えてみたり、近似曲線の直線ではなく他の関数を選んでみたり、比較するデータ自体を変えたり、別の要素を追加したり(=重回帰分析)など、まだまだ手は沢山あるので、今後少しづつ紹介していく。

まずは、手持ちのデータから何か語れ!予測しろ!と言われたときに行う、最も一般的な科学的手法を紹介した。是非色々使ってみてほしい。

まとめ

・二つのデータから関係性を求める最も一般的な手法が回帰分析である。

・データ⇒散布図作成⇒近似曲線(回帰直線)作成⇒数式表示 (⇒ 入出力フォーマット作成)

・やり方が正しいのであって、結果が正しいことを保証するものではない。

 式ができたらテスト、現実にそぐわない場合は、前提を見直そう。


Excelによるルンゲクッタ法の使い方

微分方程式をコンピュータで解く手法の一つにルンゲクッタ法というものがある。理工系学生は、C言語などのプログラミングの授業で習う。こう言うと敷居が高いように感じるかもしれないが、一般的な表計算ソフトのExcelでも簡単にできるんだ!ということを言いたくて、書くことにした。一度、Excelで手軽にルンゲクッタ法によって数式が解ける!ということがわければ、特に精度を求めない限り、自分で作った方程式を記述して、解くことができる。是非、自由に作って、どんどん色んな現象を予測してみてほしい!

そもそもルンゲクッタ法って何なの?何ができるの?

学者やエンジニアは、現象を解析し、予測するために、数式化を行う。この数式を、微分方程式という。微分方程式は、「時間tの変化に対する注目している量Xの変化量が、どういった要素に依存するか?」という視点で記述される。そして、解くというのは、「X=〇t・・・」や「X=近似値」で表すことをいう。後者を数値計算という。この数値計算の、精度がよく、一般的な手法が、ルンゲクッタ法である。アルゴリズムは下記である。

どうやって使うのか?

ルンゲクッタ法は、数式の近似解を求める手法である。関数式の近似というと、理系学生ならテーラー展開がピン!と来るであろう。それを利用した物である。詳細は、関係書籍やWikiなどを見て勉強してほしい。使い方は下記である。

まず、解析対象の現象を微分方程式の形で記述する。次に、一階方程式の形に変換する。微分方程式にはd^2X/dt^2 といった二階の形で記述される項が出てくることがある。このままだと計算できないので、それをdY/dtなどの形に変換しなおす。( 後に示す例題で理解を深めてください。)

ここまで来たら、初期値を設定します。開始時間、その時間の変数の値、時間刻みなどを決める。そして、ルンゲクッタ法をコンピュータに記述します。例えば、Excelに記載すると、下図のようになる。

最後に、上図の黒太線で囲った領域を一ブロックとしてコピーし、必要な精度が得られるまで、下のセルにコピーを繰り返す。

具体例

例えば、下記のような数式を上記の手法で解いてみる。

求めたいのは、ある時間でのXの値である。しかし、このままでは二階の微分方程式なので、一階化をする。

これで、一階の微分方程式になった。二階のものは、一階で別の変数で表し、その変数を使って一階で示せばいいわけである。言葉で書くと混乱するが、上式を見てもらえれば容易に分かると思われる。

次に、初期値の設定をする。上式は高校や大学の物理でよく登場する振動系の式である。簡単のために、M=k=1, Xo=1, Yo=0, to=0, Δt=0.5 とする。

では、これをルンゲクッタ法でExcelに記述してみることにする。

分かりやすくするために、上図のように、公式を記述した。速度成分である、Y(=dX/dt)も横に書いてみた。更新項のkは、Xに対する物。同lは、Yに対する物である。 では、実際に公式の下に記述することにする。

上図の黒網部は、初期値である。上図は、わざと記入した数式を文字列で示している。数式の戻すと…

となる。ここで、先ほどの順序に従って、2~1をコピーして、下のセルに貼り付けていく。

ここで、i=1の奴のみ表示させてグラフ化すると、Xの時間変化を見ることができる。i=1のみ表示させる方法だが、上図のi~liの部分をドラックして、「並べ替えとフィルター」を押し、ジョウロのようなマークをクリックすれば、表上のチェックボックスを表示させられる。そこのiの部分をクリックし、1を選択してみると、1のみの値だけに絞った表ができあがる。

項目をドラッグする。

赤丸箇所をクリック。

フィルターを押す。

グラフ上にチェックボックス( 小さな▼付きの吹き出し )ができる。

上図 i の部分をクリックし、1 だけにチェックを入れる。

試しに、0≦t≦5までのXをグラフ化してみる。

このように、ルンゲクッタ法により解くことができた。振動している様子がよくわかる。非線形方程式も基本的に同じやり方でやることができる。数式をセルに記述するのは面倒だが、是非、試してみてほしい。