電気製品の開発において、製品を所望の温度内に抑えることは極めて重要なことである。例えば、スマートフォンで動画を見ていたら熱くてやけどした!なんてことがあったら大問題である。そこで、機構設計者は、スマートフォン内の熱源が安全な温度になるように適切な機構を考えるのである。では、具体的にはどうすればよいのであろうか?今日は、それを少しお話ししたいと思う。
そもそも熱って何?
熱が熱が!というが、そもそも熱って何であろうか?
熱は、エネルギーである。温度は、その測定点でのエネルギー量を感覚的に捉えやすい値で示した物である。
エネルギーという概念でくくれば、光、振動、電気と熱は本質的には同じ物である。したがって、新発電方式、振動軽減、騒音対策などのトピックが出てくると、着目している現象に対して一見別の要素が出てくるのは、皆、エネルギー形態で結ばれているからである。
話を元に戻す。熱はエネルギーである。したがって、機構設計者は、作ろうとしている製品の内部に、どれくらいのエネルギーを発生する物が搭載されるのかを把握し、処理する方法を考えなければならないのである。
熱の処理の仕方 (熱の移動形態)
熱を処理するとは、エネルギーを移動させることを意味する。熱としてのエネルギーの移動のさせ方は、下記の三種類のいずれかの方法で行う。
① 熱伝導:熱源に冷たい固体をくっつけて、熱を冷たい方へ直接移動させる。
② 熱伝達:熱源の周囲の流体(空気など)を動かし、熱を流体へ移動させる。
③ 熱放射:熱を電磁波で移動させる。
①は、熱いものに触れると熱い!という現象そのものである。沸騰したヤカンに手が触れると、ヤカンのもつ大量の熱エネルギーが、その接触面からいっきに手に移動しようとするので、熱い!(痛い)と感じる。
②は、出来たてのラーメンの麺をフーフーして冷ましてから食べるという現象である。麺の熱エネルギーを、空気で吹き飛ばして下げているのである。
③は、焚火や暖炉のそばは温かいという現象を表したものである。物体が熱をもつとその熱は物体表面から電磁波によって放射される。
熱の処理の仕方 (理論手法基礎)
熱の移動形態は基本的には三種類しかない。よって、それぞれを数式で扱えれば、あとはその組み合わせで理論的に熱処理を考えることができる。
例えば、作ろうとしている製品の発する熱エネルギー(発熱量)はこのぐらいであり、製品サイズをこのくらいにすれば表面から熱放射でこのくらいの熱を放熱できる。よって、ファン(=熱源に風を吹き付けたり、空間を換気させる装置)はいらないなな!どという具合に判断できるのである。
下記に、まず、三つの伝熱現象に関係する係数を紹介し、次に関係式を示す。
三つの熱移動現象に関係する係数
・熱伝導率α [W・m/m^2・K]
・熱伝達率β[W/m^2・K]
・ステファンボルツマン係数γ:5.67×10^(-8)[W/m^2・K^4
・放射率ε:物体固有の電磁波を出す率。(ex. 皮膚0.9, 樹脂0.6~0.8, 金属0.1)
これらを使って、各熱の移動形態でどのくらいの熱を移動させられるのかを数式で示した物が下記である。
【熱伝導】
【熱伝達】
【熱放射】
これらが基本である。まだまだ知識としては不十分だが、一例として下記のように、熱伝達率を仮置きすれば、ざっくりと設計対象のサイズを見積ることができる。
【例】
・部品から発するエネルギー(発熱量):10W
・部品使用環境:35℃
のとき、部品の表面温度を仕様書に記載のある上限温度85℃にするには、放熱面積Sをどのくらいにすればよいか?
熱伝達の基本式より、
- P=10W
発熱量Pは、電子部品なら、入出力電力の差が発熱量である。光源部品なら、入力電力から光出力と出力電力を引いたものが発熱量になる。それぞれの部品の仕様書に書いてあるのでしっかり見ていただきたい。
- ΔT = 85-35 -10 = 40K
通常、使用環境で部品上限温度にならないように5~10℃ほど低めになるように設計する。ここでは、85℃より10℃低い、75℃を目標温度とした。
- β=5.0W/m^2K
熱伝達率は、風の当て方、層流や乱流、物体の形状でも変わってくるが、ここでは、大体15W/m2Kほどはあるとする。( この辺は、経験による感覚です。 )
すると、S=P/(β・ΔT)より、S=10/(15×40)=0.016m^2=16,000mm^2 の放熱面積が必要だと分かる。
この情報から、機構設計者は、50mm角でフィン長50mm、ピッチが1mm くらいのヒートシンクが必要かな…と考えるのである。
※ 上記のヒートシンクの放熱面積は16,000mm^2 である。
次回は、熱伝達率のもう少し詳しい説明と、他の伝熱現象を組み合わせて現象を予測する方法を述べたいと思う。